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Major Concepts

- exposes an algorithm to the rest of the
software

- defines inputs, outputs and parameters

- is run by an activity

- is compiled into a library

- offers and uses services

- installs in lib/orocos

- is a directory on your filesystem

- contains one or more component,
plugin or typekit libraries

- contains a manifest.xml file

- can be installed or used in-place

- description of a (part of) an application
- in an XML or script (ruby, rtt, Lua) file
- creates, connects, configures
and starts components
- allocates threads and sets connection
policies

- must be default constructible

- must be copy-able

- may be primitive types, structs, sequences
(std::vector or [1) or any combination

- that have all members as publics
- that are not templated
- that have no parent class

- required for each data type to be usable
- generated by typegen if possible
- hand-written in other cases

- are structured name-value pairs
- are the run-time parameters
- can be serialized to XML

- publish and receive data for algorithms
- are In or Out and of a given data type
- Outs are send-and-forget

- Ins can wake us up (triggering)

- are plain C/C++ functions

- are 'sent’' or 'called'

- run in the caller's thread or the
component's thread

- are grouped into service objects

- a collection of flow ports, properties and
operations

- is provided to and required by others

- can be loaded at run-time in a component

- defines the connection between an
Input and Output port

- defines data buffering, locking mechanism,
and initial state

- allows to specify a transport

- connect Orocos components to other
robotics frameworks or protocols

- handle Orocos data types over a given
protocol

- can support streaming, connection-oriented
or service-oriented communication

- may or may not be hard real-time
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