OROCOS Cheat Sheet

sheet v1.0

Major Concepts

- exposes an algorithm to the rest of the
software

- defines inputs, outputs and parameters

- is run by an activity

- is compiled into a library

- offers and uses services

- installs in lib/orocos

- is a directory on your filesystem

- contains one or more component,
plugin or typekit libraries

- contains a manifest.xml file

- can be installed or used in-place

- description of a (part of) an application
- in an XML or script (ruby, rtt, Lua) file
- creates, connects, configures
and starts components
- allocates threads and sets connection
policies

- must be default constructible

- must be copy-able

- may be primitive types, structs, sequences
(std::vector or [1) or any combination

- that have all members as publics
- that are not templated
- that have no parent class

- required for each data type to be usable
- generated by typegen if possible
- hand-written in other cases

- are structured name-value pairs
- are the run-time parameters
- can be serialized to XML

- publish and receive data for algorithms
- are In or Out and of a given data type
- Outs are send-and-forget

- Ins can wake us up (triggering)

- are plain C/C++ functions

- are 'sent’' or 'called'

- run in the caller's thread or the
component's thread

- are grouped into service objects

- a collection of flow ports, properties and
operations

- is provided to and required by others

- can be loaded at run-time in a component

- defines the connection between an
Input and Output port

- defines data buffering, locking mechanism,
and initial state

- allows to specify a transport

- connect Orocos components to other
robotics frameworks or protocols

- handle Orocos data types over a given
protocol

- can support streaming, connection-oriented
or service-oriented communication

- may or may not be hard real-time

Component Lifecycle StateMachine

: Destructor

Constructor Q recover() : u % fatal()

Pre.- Exception Fatal
Operational cleanup() /Error

I Hook
fi 0 cleanupHook() Only state in which ExecutionEngine

_configure is stopped too.

configureHook()
Stopped exception() OR C++ exception in any Hook
public API exceptionHook()
user code N\
Calls stopHook() & cleanupHook(),

start()

depending on actual state.
startHook()

stop()

stopHook() C++ Exceptions:

i - in all *Hook(): let the transition fail
trigger/update(}

Runnin
9 updateHook() i Exception: recover() will enter PreOperational
or ! FatalError: No recovery possible
errorHook()
NOMINAL EXCEPTIONAL

Component Architecture

Expose functions ) Flow Port

O Service

An Activity object executes
the ExecutionEngine,
which in turn processes
incoming messages, plugin
functions and finally
updateHook() is called.

() Operation

Asynchr. Operations

Plugin Functions

Activity

- period

- priority

- scheduler

trigger void updateHook()

{
}

InputPort

/

Receive data

OutputPort

N

Publish data

// your code

Property () marshalling
“>Configure parameters




