Distributing Orocos
Components with CORBA

The CORBA Transport Library
Copyright © 2006, 2007, 2008, 2009, 2010 FMTC, Peter Soetens

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published
by the Free Software Foundation, with no Invariant Sections, with no Front-Cover
Texts, and with no Back-Cover Texts. A copy of thislicense can be found at http://
www.fsf.org/copyleft/fdl.html.

Revision History

Revision 0.01 4 May 2006 ps
Initial version
Revision 0.02 24 August 2006 ps
Update to new Orocos interfaces
Revision 0.03 9 November 2006 ps
1.0.0 release updates
Revision 0.04 3 August 2007 ps
1.2.2 release updates, added corbaloc options.
Revision 0.05 9 April 2009 ps
Put proxy server as mandatory.
Revision 0.06 2 November 2009 ps
Renamed to orocos-transports-corba.xml and minor additions.
Revision 0.07 1 April 2010 ps
Document new CORBA Transport API (RTT 2.0)
Revision 1.0 24 June 2011 ps

Provide basic instructions for setting up corba deployments.
Abstract
This document explains the principles of the Corba Transport of Orocos, the Open RObot COntrol

Software project. It enables transparant deployment accross networked nodes of plain Orocos C++
components.

Table of Contents

1. The CORBA TranSPOIuvviiiiieieeiiiiiiiiiee e ee e e e s st ber e e e e e s e s snbrre e e e e e e e s s seanrraaeeeeeeesans 2
2. Setup CORBA Naming (ReqUITEd!)eeeiiiiiiiiiiiiiiee et e e 2
3. Connecting CORBA COMPONENESuuviiiieieeeiiiiiiiieeeeeeeesssintrrneeeeeeeesssasnnareeeeeeeseennnes 2
4, IN-depth INFOrMALIONeeiiiiii e e e anee e 3

A1, SEBIUS ...uveeetetitittttttetettet ettt e e e et e e s e e e e nnrnnnnee 3

.2, LIMITBHONSuvveeeeiiiiiee et e ettt e et e e e st e e e st e e e s snsne e e e s nnneeas 4
5. COUE EXAMPIES .oveeieeiee ettt e e e e e st e e e e e e e e s ra e e e e e aeeaan 4
6. TIMING AN TIME-OULSeeiiieiiii it e e e e e e e e e e s e et e e e e e e e e e s enarreees 5
7. OrocoS Corba INEITACESeveiiiiiiee it 6
8. The NAMING SEIVICE ..oeiiieii i e e e e e e s s e eeeeas 6

8.1 EXAMPIE e a e e e e nanrrees 6

http://www.fsf.org/copyleft/fdl.html
http://www.fsf.org/copyleft/fdl.html

Distributing Orocos Components with CORBA

1. The CORBA Transport

This transport allows Orocos components to live in separate processes, distributed over a
network and still communicate with each other. The underlying middieware is CORBA, but
no CORBA knowledge is required to distribute Orocos components.

The Corba transport provides:

e Connection and communication of Orocos components over a network or between two
processes on the same compuiter.

* Clients (like visualisation) making a connection to any running Orocos component using
the IDL interface.

» Transparant use: no recompilation of existing components required. The library acts as a
run-time plugin.

2. Setup CORBA Naming (Required!)

2 I mportant

Follow these instructions carefully or your setup will not work !

In order to distribute Orocos components over a network, your computers must be setup
correctly for using Corba. Start a Corba Naming Service once with multicasting on. Using
the TAO Naming Service, thiswould be:

$ Naming_Service-m 1 &
And your application as:

$ deployer-corba-gnulinux
OR: if that fails, start the Naming Service with the following options set:

$ Naming_Service -m 0 -ORBL istenEndpoints iiop://<the-ns-ip-address>:2809 -ORBDaemon

The <the-ns-ip-address> must be replaced with the ip address of a network interface of
the computer where you start the Naming Service. And each computer where your start the
application:

$ export NameServicel OR=corbal oc:iiop: <the-ns-ip-address>:2809/NameService
$ deployer-corba-gnlinux

With <the-ns-ip-address> the same as above.

For more detailed information or if your deployer does not find the Naming Service, take
alook at this page: Using CORBA [http://www.orocos.org/wiki/rtt/frequently-asked-ques-
tions-fag/using-corba]

3. Connecting CORBA components

Normally, the Orocos deployer will create connections for you between CORBA compo-
nents. Be sureto read the OCL DeploymentComponent Manual [http://www.orocos.org/sta

http://www.orocos.org/wiki/rtt/frequently-asked-questions-faq/using-corba
http://www.orocos.org/wiki/rtt/frequently-asked-questions-faq/using-corba
http://www.orocos.org/wiki/rtt/frequently-asked-questions-faq/using-corba
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html

Distributing Orocos Components with CORBA

ble/documentation/ocl/v2.x/doc-xml/orocos-deployment.html] for detailed instructions on
how you can setup components such that the can be used from another process.

This is an example deployment script 'server-script.ops for creating your first process and
making one component available in the network:

import(“ocl") /I make sure ocl is loaded
loadComponent("*MyComponent"," TaskContext") // Create a new default TaskContext

server("MyComponent” true) /I make MyComponent a CORBA server, and
/I register it with the Naming Service (‘true’)

Y ou can start this application with:;
$ deployer-corba-gnulinux -s server-script.ops

In another console, start aclient program ‘client-script.ops' that wishesto use this component:

import(*"ocl") /I make sure ocl isloaded
loadComponent(*MyComponent”,"CORBA") /I make 'MyComponent' available in this

program
MyComponent.start() /I Use the component as usual...connect ports etc.

Y ou can start this application with:;
$ deployer-corba-gnulinux -s client-script.ops
More CORBA deployment options are described in the OCL Deployment-

Component Manual [http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/oro-
cos-deployment.htmil].

4. In-depth information

You don't need this information unless you want to talk to the CORBA layer directly, for
example, from a non-Orocos GUI application.

4.1. Status

The Corba transport aims to make the whole Orocos Component interface available over
the network. Consult the Component Builder's Manual for an overview of a Component's
interface.

These Component interfaces are available:

» TaskContext interface: fully (TaskContext.idl)

Properties/Attributes interface: fully (Configurationinterface.idl)
» OperationCaller/Operation interface: fully (Operationlnterface.idl)

» Serviceinterface: fully (Service.idl, ServiceRequester.idl)

http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html

Distributing Orocos Components with CORBA

» DataFlow interface: fully (DataFlow.idl)

4.2. Limitations

The following limitations apply:

* You need the typegen command from the ‘orogen’ package in order to communicate cus-
tom structs/data types between components.

* Interacting with a remote component using the CORBA transport will never be real-time.
The only exception to this rule is when using the data flow transport: reading and writing
data ports is always real-time, the transport of the data itself is not a real-time process.

5. Code Examples

S Note
Y ou only need this example code if you don't use the deployer application!

This example assumes that you have taken a look at the '‘Component Builder's Manual'. It
creates a smple 'Hello World' component and makes it available to the network. Another
program connects to that component and starts the component interface browser in order to
control the 'Hello World' component. Both programs may be run on the same or on different
computers, given that a network connection exists.

In order to setup your component to be available to other components transparantly, proceed
as.

/I server.cpp
#include <rtt/transports/corba/ Task ContextServer.hpp>

#include <rtt/Activity.hpp>
#include <rtt/TaskContext.hpp>
#include <rtt/os/main.h>

using namespace RTT;
using namespace RTT::corba;

int ORO_main(int argc, char** argv)

{
/I Setup a component
TaskContext mycomponent("HellowWorld");
/I Execute a component
mycomponent.setActivity(new Activity(1, 0.01);
mycomponent.start();

/I Setup Corba and Export:
corba:: TaskContextServer::1nitOrb(argc, argv);
TaskContextServer::Create(& mycomponent);

/I Wait for requests:
TaskContextServer::RunOrhb();

/I Cleanup Corba:
TaskContextServer::DestroyOrh();
return O;

Distributing Orocos Components with CORBA

}

Next, in order to connect to your component, you need to create a 'proxy' in another file:

/I client.cpp
#include <rtt/transports/corba/TaskContextServer.hpp>
#include <rtt/transports/corba/ TaskContextProxy.hpp>

#include <ocl/TaskBrowser.hpp>
#include <rtt/os/main.h>

using namespace RTT::corba;
using namespace RTT;

int ORO_main(int argc, char** argv)

{
/I Setup Corba:

corba:: TaskContextServer::InitOrb(argc, argv);

/I Setup athread to handle call-backs to our components.
corba:: TaskContextServer::ThreadOrb();

/I Get a pointer to the component above
TaskContext* component = TaskContextProxy::Create("HelloWorld");

/Il Interfaceit:
TaskBrowser browse(component);
browse.loop();

/I Stop ORB thread:

corba:: TaskContextServer::ShutdownOrhb();
/I Cleanup Corba:
TaskContextServer::DestroyOrh();

return O;

}

Both examples can be found in the corba-example package on Orocos.org. You may use
‘connectPeers and the related methods to form component networks. Any Orocos component
can be 'transformed' in this way.

6. Timing and time-outs

By default, aremote method invocation waits until the remote end compl etes and returnsthe
call, or an exception is thrown. In case the caller only wishes to spend a limited amount of
timefor waiting, the TAO Messaging service can be used. OmniORB to date does not support
this service. TAO allows timeouts to be specified on ORB level, object (POA) level and
method level. Orocos currently only supports ORB level, but if necessary, you can apply the
configuration yourself to methods or objects by accessing the 'server()' method and casting
to the correct CORBA object type.

In order to provide the ORB-wide timeout value in seconds, use:

I/ Wait no more than 0.1 seconds for a response.
ApplicationSetup::InitORB(argc, argv, 0.1);

TaskContextProxy and TaskContextServer inherit from ApplicationSetup, so you might as
well use these classes to scope InitORB.

Distributing Orocos Components with CORBA

7. Orocos Corba Interfaces

Orocosdoesnot requirel DL or CORBA knowledge of the user when two Orocos components
communicate. However, if you want to access an Orocos component from a non-Orocos
program (like a M SWindows GUI), you need to use the IDL files of Orocos.

The relevant files are:

e TaskContext.idl: The main Component Interface file, providing CORBA access to a
TaskContext.

» Serviceidl: Theinterface of services by acomponent

» ServiceRequester.idl: Theinterface of required services by a component

» Operationinterface.idl: Theinterface for calling or sending operations.

» Configurationinterface.idl: The interface for attributes and properties.

o DataFlow.idl: Theinterface for communicating buffered or unbufferd data.

All datais communicated with CORBA::Any types. Theway of using theseinterfacesisvery
similar to using Orocosin C++, but using CORBA syntax.

8. The Naming Service

Orocos uses the CORBA Naming Service such that components can find each other on the
same or different networked stations. See also Using CORBA [http://www.orocos.org/wi-
ki/rtt/frequently-asked-questions-fag/using-corba] for a detailed overview on using this pro-
gram in various network environments or for troubleshooting.

The components are registered under the naming context path "TaskContexts/Component-
Name" (id fields). Thekind fields are left empty. Only the components which were explicitly
exported in your code, using corba:: TaskContextServer, are added to the Naming Service.
Others write their address as an IOR to a file "ComponentName.ior”, but you can 'browse
to other components using the exported name and then using 'getPeer()' to access its peer
components.

8.1. Example

Since the multicast service of the CORBA Naming_Server behaves very unpredictable (see
thislink [http://www.theaceorb.com/fag/index.html#115]), you shouldn't useit. Instead, itis
better started via some extralinesin /etc/rc.local:

Start CORBA Naming Service

echo Starting CORBA Naming Service

pidof Naming_Service || Naming_Service -m 0 -ORBL istenEndpointsiiop://192.168.246.151:2809
-ORBDaemon

http://www.orocos.org/wiki/rtt/frequently-asked-questions-faq/using-corba
http://www.orocos.org/wiki/rtt/frequently-asked-questions-faq/using-corba
http://www.orocos.org/wiki/rtt/frequently-asked-questions-faq/using-corba
http://www.theaceorb.com/faq/index.html#115
http://www.theaceorb.com/faq/index.html#115

Distributing Orocos Components with CORBA

Where 192.168.246.151 should of course be replaced by your ip adres (using a hosthame
may Yyield trouble due to the new 127.0.1.1 entries in /etc/hosts, we think).

All clients (i.e. both your application and the ktaskbrowser) wishing to connect to the
Naming_Service should use the environment variable NameServicel OR

[user@host ~]$ echo $NameServicel OR
corbaloc:iiop:192.168.246.151:2809/NameService

You can set it f.i. in your .bashrc file or on the command line via

export NameServicel OR=corbal oc:iiop:192.168.246.151:2809/NameService

See the orocos website for more information on compiling/running the ktaskbrowser.

	Distributing Orocos Components with CORBA
	Table of Contents
	1. The CORBA Transport
	2. Setup CORBA Naming (Required!)
	3. Connecting CORBA components
	4. In-depth information
	4.1. Status
	4.2. Limitations

	5. Code Examples
	6. Timing and time-outs
	7. Orocos Corba Interfaces
	8. The Naming Service
	8.1. Example

