
1

The OROCOS Real-Time
Toolkit Installation Guide

Real-Time Toolkit Version 2.6.0

Copyright © 2002,2003,2004,2005,2006,2007,2008,2009,2010 Peter Soetens, FMTC

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published
by the Free Software Foundation, with no Invariant Sections, with no Front-Cover
Texts, and with no Back-Cover Texts. A copy of this license can be found at http://
www.fsf.org/copyleft/fdl.html.

Revision History
Revision 1.0.0 27 Oct 2006 ps

Simplified build system.
Revision 1.0.1 21 Nov 2006 ps

Updated build/run/doc dependencies.
Revision 1.1.0 13 Apr 2007 ps

Rewritten for Orocos 1.2.0.
Revision 1.2.1 02 June 2007 ps

Minor clarifications.
Revision 1.4.0 22 Nov 2007 ps

Changes in the library name (-target) and .pc files
Revision 1.4.1 12 Feb 2008 ps

Added Debian/Ubuntu packages install instruc-
tions and updated Getting started/Makefile section.

Revision 1.4.2 22 Apr 2008 ps
Improved/fixed Debian/Ubuntu package install instructions.

Revision 1.6.0 02 Aug 2008 kg
Added Mac OS X install instructions.

Revision 1.10.0 14 Sept 2009 ps
Added pointers to win32 install instructions

Revision 1.10.1 14 Oct 2009 ps
Clarified instructions for non-standard environments, cleanups.

Revision 2.0.0 28 Aug 2010 ps
Update to 2.0.0 release.

Revision 2.1.0 11 Oct 2010 ps
Added UseOrocos.cmake macros.

Abstract

This document explains how the Real-Time Toolkit of Orocos [http://www.orocos.org], the Open RO-
bot COntrol Software project must be installed and configured.

Table of Contents
1. Setting up your Orocos build environment ... 2

1.1. Introduction ... 2
1.2. Basic Real-Time Toolkit Installation on Windows-like systems 4
1.3. Basic Real-Time Toolkit Installation on Unix-like systems 4

2. Getting Started with the Code ... 5

http://www.fsf.org/copyleft/fdl.html
http://www.fsf.org/copyleft/fdl.html
http://www.orocos.org
http://www.orocos.org

The OROCOS Real-Time Toolkit Installation Guide

2

2.1. Examples .. 5
2.2. Building components and applications .. 6
2.3. What about main() ? .. 9

3. Detailed Configuration using 'CMake' ... 9
3.1. Real-Time Toolkit Build Configuration ... 9
3.2. Configuring the target Operating System ... 10
3.3. Setting Build Compiler Flags ... 10
3.4. Building for RTAI / LXRT .. 11
3.5. Building for Xenomai (version 2.2.0 or newer) .. 12
3.6. Configuring for CORBA .. 13

4. Cross Compiling Orocos ... 14

1. Setting up your Orocos build environ-
ment

Big Fat Warning

We're gradually moving the contents of the installation manual into the wiki.
Check out the The RTT installation wiki [http://www.orocos.org/wiki/rtt/instal-
lation] for completeness.

1.1. Introduction
This sections explains the supported Orocos targets and the Orocos versioning scheme.

1.1.1. Supported platforms (targets)

Orocos was designed with portability in mind. Currently, we support RTAI/LXRT (http://
www.rtai.org), GNU/Linux userspace, Xenomai (Xenomai.org [http://www.xenomai.org]),
Mac OS X (apple.com [http://www.apple.com/macosx/]) and native Windows using Mi-
crosoft Visual Studio. So, you can first write your software as a normal Linux/Mac OS X
program, using the framework for testing and debugging purposes in plain userspace (Lin-
ux/Mac OS X) and recompile later to a real-time target or MS Windows.

1.1.2. The versioning scheme

A particular version is represented by three numbers separated by dots.For example :

• 2.2.1 : Release 2, Feature update 2, bug-fix revision 1.

1.1.3. Dependencies on other Libraries

Before you install Orocos, verify that you have the following software installed on your
platform :

Table 1. Build Requirements

Program / Library Minimum Version Description

CMake 2.6.3 (all platforms) See resources on cmake.org
[http://www.cmake.org/
cmake/
resources/software.html] for

http://www.orocos.org/wiki/rtt/installation
http://www.orocos.org/wiki/rtt/installation
http://www.orocos.org/wiki/rtt/installation
http://www.rtai.org
http://www.rtai.org
http://www.xenomai.org
http://www.xenomai.org
http://www.apple.com/macosx/
http://www.apple.com/macosx/
http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html

The OROCOS Real-Time Toolkit Installation Guide

3

Program / Library Minimum Version Description

pre-compiled packages in
case your distribution does
not support this version

Boost C++ Library 1.33.0 (1.40.0 recommend-
ed!)

Boost.org [http://
www.boost.org] from version
1.33.0 on has a very effi-
cient (time/space) lock-free
smart pointer implementation
which is used by Orocos.
1.36.0 has boost::intrusive
which we require on Win-
dows with MSVS. 1.40.0 has
a shared_ptr implementation
we require when building
Service objects.

Boost C++ Test Library 1.33.0 (During build only) Boost.org [http://
www.boost.org] test library
('unit_test_framework') is re-
quired if you build the
RTT from source and
ENABLE_TESTS=ON (de-
fault). The RTT libraries don't
depend on this library, it is on-
ly used for building our unit
tests.

Boost C++ Thread Library 1.33.0 (Mac OS-X only) Boost.org [http://
www.boost.org] thread li-
brary is required on Mac OS-
X.

Boost C++ Serialization Li-
brary

1.37.0 Boost.org [http://
www.boost.org] serialization
library is required for the
type system and the MQueue
transport.

GNU gcc / g++ Compilers 3.4.0 (Linux/Cygwin/Mac
OS X)

gcc.gnu.org [http://
gcc.gnu.org] Orocos builds
with the GCC 4.x series as
well.

MSVS Compilers 2005 One can download the MS
VisualStudio 2008 Express
edition for free.

Xerces C++ Parser 2.1 (Optional) Xerces website [http://
xml.apache.org/xerces-c/]
Versions 2.1 until 3.1 are
known to work. If not found,
an internal XML parser is
used.

http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://gcc.gnu.org
http://gcc.gnu.org
http://gcc.gnu.org
http://xml.apache.org/xerces-c/
http://xml.apache.org/xerces-c/
http://xml.apache.org/xerces-c/

The OROCOS Real-Time Toolkit Installation Guide

4

Program / Library Minimum Version Description

ACE & TAO TAO 1.3 (Optional) ACE & TAO website [http://
www.cs.wustl.edu/
~schmidt/] When you start
your components in a net-
worked environment, TAO
can be used to set up com-
munication between compo-
nents. CORBA is used as a
'background' transport and is
hidden for normal users.

Omniorb 4 (Optional) Omniorb website [http://
omniorb.sourceforge.net/]
Omniorb is more robust and
faster than TAO, but has less
features. CORBA is used as a
'background' transport and is
hidden for normal users.

All these packages are provided by most Linux distributions. In Mac OS X, you can install
them easily using fink [http://www.finkproject.org] or macports [http://www.macports.org/].
Take also a look on the Orocos.org RTT download [http://www.orocos.org/rtt/source] page
for the latest information.

1.2. Basic Real-Time Toolkit Installation on Win-
dows-like systems

We documented this on the on-line wiki for the various flavours/options one has on the MS
Windows platform: RTT on MS Windows [http://www.orocos.org/wiki/rtt/rtt-ms-windows]

1.3. Basic Real-Time Toolkit Installation on Unix-
like systems

The RTT uses the CMake [http://www.cmake.org] build system for configuring and building
the library.

The tool you will need is cmake Most linux distros have a cmake package, and so do fink/
macports in OS X. In Debian, you can use the official Debian version using

 apt-get install cmake

If this does not work for you, you can download cmake from the CMake homepage [http://
www.cmake.org].

Next, download the orocos-rtt-2.6.0-src.tar.bz2 package from the Orocos webpage and ex-
tract it using :

 tar -xvjf orocos-rtt-2.6.0-src.tar.bz2

This section provides quick installation instructions if you want to install the RTT on a
standard GNU/Linux system. Please check out Section 3, “Detailed Configuration using
'CMake'” for installation on other OSes and/or if you want to change the default configura-
tion settings.

http://www.cs.wustl.edu/~schmidt/
http://www.cs.wustl.edu/~schmidt/
http://www.cs.wustl.edu/~schmidt/
http://www.cs.wustl.edu/~schmidt/
http://omniorb.sourceforge.net/
http://omniorb.sourceforge.net/
http://omniorb.sourceforge.net/
http://www.finkproject.org
http://www.finkproject.org
http://www.macports.org/
http://www.macports.org/
http://www.orocos.org/rtt/source
http://www.orocos.org/rtt/source
http://www.orocos.org/wiki/rtt/rtt-ms-windows
http://www.orocos.org/wiki/rtt/rtt-ms-windows
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org

The OROCOS Real-Time Toolkit Installation Guide

5

 mkdir orocos-rtt-2.6.0/build
 cd orocos-rtt-2.6.0/build
 cmake .. -DOROCOS_TARGET=<target> [-DCMAKE_PREFIX_PATH=/opt/orocos] [-
DCMAKE_INSTALL_PREFIX=/usr/local] [-DLINUX_SOURCE_DIR=/usr/src/linux]
 make
 make install

Where

• OROCOS_TARGET: <target> is one of 'gnulinux', 'lxrt', 'xenomai', 'macosx', 'win32'.
When none is specified, 'gnulinux' is used.

• CMAKE_PREFIX_PATH: used to specify places to look for libraries such as Boost, TAO/
ACE etc.

• CMAKE_INSTALL_PREFIX: specifies where to install the RTT.

• LINUX_SOURCE_DIR: is required for RTAI/LXRT and older Xenomai version (<2.2.0).
It points to the source location of the RTAI/Xenomai patched Linux kernel.

Note

See Section 3, “Detailed Configuration using 'CMake'” for specifying non stan-
dard include and library paths to search for dependencies.

The make command will have created a liborocos-rtt-<target>.so library, and if CORBA is
enabled a liborocos-rtt-corba-<target>.so library.

The make docapi and make docpdf dochtml (both in 'build') commands build API docu-
mentation and PDF/HTML documentation in the build/doc directory.

Orocos can optionally (but recommended) be installed on your system with

 make install

The default directory is /usr/local, but can be changed with the CMAKE_INSTALL_PREFIX
option :

 cmake .. -DCMAKE_INSTALL_PREFIX=/opt/orocos/

If you choose not to install Orocos, you can find the build's result in the build/rtt directory.

2. Getting Started with the Code
This Section provides a short overview of how to proceed next using the Orocos Real-Time
Toolkit.

2.1. Examples

We're still porting the examples to the 2.x API. The most up to date examples are the RTT
2.x exercises which you can find on the Getting Started [http://www.orocos.org/wiki/oro-
cos/toolchain/getting-started] webpage.

http://www.orocos.org/wiki/orocos/toolchain/getting-started
http://www.orocos.org/wiki/orocos/toolchain/getting-started
http://www.orocos.org/wiki/orocos/toolchain/getting-started

The OROCOS Real-Time Toolkit Installation Guide

6

2.2. Building components and applications

Below, we provide two ways of building Orocos components: using CMake or a
plain Makefile. Use this in combination with the code found in the Orocos Compo-
nent Builder's Manual [http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/oro-
cos-components-manual.html].

http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html

The OROCOS Real-Time Toolkit Installation Guide

7

Example 1. A CMakeLists.txt file for an Orocos Application or
Component

Note

This file is automatically generated for you when you use the >orocreate-pkg
program.

You can build a component using this example CMakeLists.txt file:

cmake_minimum_required(VERSION 2.6.3)

project(myrobot)

find_package(Orocos-RTT)

Defines all our macros below:
include(${OROCOS-RTT_USE_FILE_PATH}/UseOROCOS-RTT.cmake)

Creates libhardware.so, libvcontrol.so and libpcontrol.so
and installs in lib/orocos/myrobot/
orocos_component(hardware hardware.cpp)
orocos_component(vcontrol VelocityControl.cpp)
orocos_component(pcontrol PositionControl.cpp)
Each .cpp file contains one Orocos Component, using the
ORO_CREATE_COMPONENT macro.

Creates libmyrobot-support.so and installs it in
lib/
orocos_library(support support.cpp)
support.cpp is a 'helper' library you wrote.

Creates libmyrobot-types.so typekit using typegen
and installs it in lib/orocos/myrobot/types/
orocos_typegen_headers(RobotControlData.hpp RobotMeasurements.hpp)
These are headers that define the data types your
components understand

Creates libmyrobot-debug.so
and installs in lib/orocos/myrobot/plugins/
orocos_plugin(myrobot-debug debugrobot.cpp)

debugrobot.cpp must implement the RTT plugin API.

Installs header in include/orocos/myrobot
orocos_install_headers(hardware.hpp)
Just some header you like to install

Finishes up our package by generating a set of .pc files
This allows other packages to depend on this package and
automatically link with it.
orocos_generate_package()

The OROCOS Real-Time Toolkit Installation Guide

8

Example 2. A Makefile for an Orocos Application or Component

Note

We strongly recommend using the cmake macros above.

You can compile your program with a Makefile resembling this one :

 OROPATH=/usr/local

 all: myprogram mycomponent.so

 # Build a purely RTT application for gnulinux (not recommended).
 # Use the 'OCL' settings below if you use the TaskBrowser or other OCL functionality.
 #
 CXXFLAGS=`PKG_CONFIG_PATH=${OROPATH}/lib/pkgconfig pkg-config orocos-rtt-
gnulinux --cflags`
 LDFLAGS=`PKG_CONFIG_PATH=${OROPATH}/lib/pkgconfig pkg-config orocos-rtt-gnulinux
 --libs`

 myprogram: myprogram.cpp
 g++ myprogram.cpp ${CXXFLAGS} ${LDFLAGS} -o myprogram

 # Building dynamic loadable components requires the OCL to be installed as well:
 #
 CXXFLAGS=`PKG_CONFIG_PATH=${OROPATH}/lib/pkgconfig pkg-config orocos-ocl-
gnulinux --cflags`
 LDFLAGS=`PKG_CONFIG_PATH=${OROPATH}/lib/pkgconfig pkg-config orocos-ocl-
gnulinux --libs`

 mycomonent.so: mycomponent.cpp
 g++ mycomponent.cpp ${CXXFLAGS} ${LDFLAGS} -fPIC -shared -DRTT_COMPONENT
 -o mycomponent.so

Where your replace gnulinux with the target for which you wish to compile. If you use parts
of the OCL, use the flags from orocos-ocl-gnulinux.

We recommend reading the Deployment Component [http://www.orocos.org/ocl/deploy-
ment] manual for building and loading Orocos components into an application.

These flags must be extended with compile and link options for your particular application.

Important

The LDFLAGS option must be placed after the .cpp or .o files in the gcc com-
mand.

Note

Make sure you have read Section 3, “Detailed Configuration using 'CMake'” for
your target if you application has compilation or link errors (for example when
using LXRT).

http://www.orocos.org/ocl/deployment
http://www.orocos.org/ocl/deployment
http://www.orocos.org/ocl/deployment

The OROCOS Real-Time Toolkit Installation Guide

9

2.3. What about main() ?
In case you also want to write an executable that runs components, your main() function
needs to be named ORO_main().

Some care must be taken in initialising the realtime environment. First of all, you need to
provide a function int ORO_main(int argc, char** argv) {...}, defined in <rtt/os/main.h>
which contains your program :

 #include <rtt/os/main.h>

 int ORO_main(int argc, char** argv)
 {
 // Your code, do not use 'exit()', use 'return' to
 // allow Orocos to cleanup system resources.
 }

If you do not use this function, it is possible that some (OS dependent) Orocos functionality
will not work.

3. Detailed Configuration using 'CMake'
If you have some of the Orocos dependencies installed in non-standard locations, you have to
specify this using cmake variables before running the cmake configuration. Specify header
locations using the CMAKE_INCLUDE_PATH variable (e.g. using bash and fink in Mac
OS X, the boost library headers are installed in /sw/include, so you would specify

export CMAKE_INCLUDE_PATH=/sw/include;/boost/include

For libraries in not default locations, use the

export CMAKE_LIBRARY_PATH=/sw/libs;/boost/lib

variable. When your installation directory has a standard layout, you can also use a single

export CMAKE_PREFIX_PATH=/boost

statement. For more information, see cmake useful variables [http://www.cmake.org/Wi-
ki/CMake_Useful_Variables#Environment_Variables] link.

Important

In order to avoid setting these global exports repeatedly, the RTT build system
reads a file in which you can specify your build environment. This file is the
orocos-rtt.cmake file, which you obtain by making a copy from orocos-rtt-2.6.0/
orocos-rtt.default.cmake into the same directory. The advantage is that this file
lives in the rtt top source directory, such that it can be re-used across builds.
Using this file is recommended!

3.1. Real-Time Toolkit Build Configuration
The RTT can be configured depending on your target. For embedded targets, the large script-
ing infrastructure and use of exceptions can be left out. When CORBA is available, an addi-
tional library is built which allows components to communicate over a network.

In order to configure the RTT in detail, you need to invoke the ccmake command:

http://www.cmake.org/Wiki/CMake_Useful_Variables#Environment_Variables
http://www.cmake.org/Wiki/CMake_Useful_Variables#Environment_Variables
http://www.cmake.org/Wiki/CMake_Useful_Variables#Environment_Variables

The OROCOS Real-Time Toolkit Installation Guide

10

 cd orocos-rtt-2.6.0/build
 ccmake ..

from your build directory. It will offer a configuration screen. The keys to use are
'arrows'/'enter' to modify a setting, 'c' to run a configuration check (may be required multiple
times), 'g' to generate the makefiles. If an additional configuration check is required, the 'g'
key can not be used and you must press again 'c' and examine the output.

3.1.1. RTT with CORBA plugin

In order to enable CORBA, a valid installation of TAO or OMNIORB must be detected on
your system and you must turn the ENABLE_CORBA option on (using ccmake). Enabling
CORBA does not modify the RTT library and builds and installs an additional library and
headers.

Alternatively, you can re-run cmake:

 cmake .. -DENABLE_CORBA=ON

See Section 3.6, “Configuring for CORBA” for full configuration details when using the
CORBA transport.

3.2. Configuring the target Operating System
Move to the OROCOS_TARGET, press enter and type on of the following supported targets
(all in lowercase):

• gnulinux

• macosx

• xenomai

• lxrt

• win32

The xenomai and lxrt targets require the presence of the LINUX_SOURCE_DIR option since
these targets require Linux headers during the Orocos build. To use the LibC Kernel headers
in /usr/include/linux, specify /usr. Inspect the output to find any errors.

Note

From Xenomai version 2.2.0 on, Xenomai configuration does no longer require
the --with-linux option.

3.3. Setting Build Compiler Flags
You can set the compiler flags using the CMAKE_BUILD_TYPE option. You may edit this
field to contain:

• Release

• Debug

• RelWithDebInfo

The OROCOS Real-Time Toolkit Installation Guide

11

• MinSizeRel

• None

In case you choose None, you must set the CMAKE_C_FLAGS, CMAKE_CXX_FLAGS
manually. Consult the CMake manuals for all details.

3.4. Building for RTAI / LXRT
Orocos has been tested with RTAI 3.0, 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6. The latest version of
RTAI is recommended for RTAI users. You can obtain it from the RTAI home page [http://
www.rtai.org]. Read The README.* files in the rtai directory for detailed build instructions,
as these depend on the RTAI version.

3.4.1. RTAI settings

RTAI comes with documentation for configuration and installation. During 'make menucon-
fig', make sure that you enable the following options (in addition to options you feel you need
for your application) :

• General -> 'Enable extended configuration mode'

• Core System -> Native RTAI schedulers > Scheduler options -> 'Number of LXRT
slots' ('1000')

• Machine -> 'Enable FPU support'

• Core System -> Native RTAI schedulers > IPC support -> Semaphores, Fifos, Bits (or
Events) and Mailboxes

• Add-ons -> 'Comedi Support over LXRT' (if you intend to use the Orocos Comedi Drivers)

• Core System -> Native RTAI schedulers > 'LXRT scheduler (kernel and user-space tasks)'

After configuring you must run 'make' and 'make install' in your RTAI directory: make sudo
make install

After installation, RTAI can be found in /usr/realtime. You'll have to specify this directory
in the RTAI_INSTALL_DIR option during 'ccmake'.

3.4.2. Loading RTAI with LXRT

LXRT is a all-in-one scheduler that works for kernel and userspace. So if you use this, you can
still run kernel programs but have the ability to run realtime programs in userspace. Orocos
provides you the libraries to build these programs. Make sure that the following RTAI kernel
modules are loaded

• rtai_sem

• rtai_lxrt

• rtai_hal

• adeos (depends on RTAI version)

http://www.rtai.org
http://www.rtai.org
http://www.rtai.org

The OROCOS Real-Time Toolkit Installation Guide

12

For example, by executing as root: modprobe rtai_lxrt; modprobe rtai_sem.

3.4.3. Compiling Applications with LXRT

Application which use LXRT as a target need special flags when being compiled and linked.
Especially :

• Compiling : -I/usr/realtime/include

This is the RTAI headers installation directory.

• Linking : -L/usr/realtime/lib -llxrt for dynamic (.so) linking OR add /usr/realtime/liblxrt.a
for static (.a) linking.

Important

You might also need to add /usr/realtime/lib to the /etc/ld.so.conf file and rerun
ldconfig, such that liblxrt.so can be found. This option is not needed if you
configured RTAI with LXRT-static-inlining.

3.5. Building for Xenomai (version 2.2.0 or newer)

Note

For older Xenomai versions, consult the Xenomai README of that version.

Xenomai provides a real-time scheduler for Linux applications. See the Xenomai home page
[http://www.xenomai.org]. Xenomai requires a patch one needs to apply upon the Linux
kernel, using the scripts/prepare-kernel.sh script. See the Xenomai installation manual.
When applied, one needs to enable the General Setup -> Interrupt Pipeline option during
Linux kernel configuration and next the Real-Time Sub-system -> , Xenomai and Nucleus.
Enable the Native skin, Semaphores, Mutexes and Memory Heap. Finally enable the Posix
skin as well.

When the Linux kernel is built, do in the Xenomai directory: ./configure ; make; make
install.

You'll have to specify the install directory in the CMAKE_PATH_PREFIX option during
'cmake'.

3.5.1. Loading Xenomai

The RTT uses the native Xenomai API to address the real-time scheduler. The Xenomai
kernel modules can be found in /usr/xenomai/modules. Only the following kernel modules
need to be loaded:

• xeno_hal.ko

• xeno_nucleus.ko

• xeno_native.ko

in that order. For example, by executing as root: insmod xeno_hal.ko; insmod
xeno_nucleus.ko; insmod xeno_native.ko.

http://www.xenomai.org
http://www.xenomai.org

The OROCOS Real-Time Toolkit Installation Guide

13

3.5.2. Compiling Applications with Xenomai

Application which use Xenomai as a target need special flags when being compiled and
linked. Especially :

• Compiling : -I/usr/xenomai/include

This is the Xenomai headers installation directory.

• Linking : -L/usr/xenomai/lib -lnative for dynamic (.so) linking OR add /usr/xeno-
mai/libnative.a for static (.a) linking.

Important

You might also need to add /usr/xenomai/lib to the /etc/ld.so.conf file and
rerun ldconfig, such that libnative.so can be found automatically.

3.6. Configuring for CORBA
In case your application benefits from remote access over a network, the RTT can be used
with 'The Ace Orb' (TAO) or OMNIORB-4. The RTT was tested with TAO 1.3.x, 1.4.x, 1.5x
and 1.6.x and OMNIORB 4.1.x. There are two major TAO development lines. One line is pre-
pared by OCI (Object Computing Inc.) [http://www.ociweb.com] and the other by the DOC
group [http://www.dre.vanderbilt.edu/]. You can find the latest OCI TAO version on OCI's
TAO website [http://www.theaceorb.com]. The DOC group's TAO version can be found
on the Real-time CORBA with TAO (The ACE ORB) website [http://www.cs.wustl.edu/
~schmidt/TAO.html]. Debian and Ubuntu users use the latter version when they install
from .deb packages.

If you need commercial support for any TAO release or seek expert advice on which
TAO version or development line to use, consult the commercial support website [http://
www.cs.wustl.edu/~schmidt/commercial-support.html].

3.6.1. TAO installation (Optional)

Important

Debian or Ubuntu users can skip this step and just do sudo aptitude install lib-
tao-orbsvcs-dev tao-idl gperf-ace tao-naming . Orocos software will automat-
ically detect the installed TAO software.

Note

If your distribution does not provide the TAO libraries, or you want to use the
OCI version, you need to build manually. These instructions are for building on
Linux. See the ACE and TAO installation manuals for building on your platform.

Orocos requires the ACE, TAO and TAO-orbsvcs libraries and header files to be
installed on your workstation. If you used manual installation, the ACE_ROOT
and TAO_ROOT variables must be set.

You need to make an ACE/TAO build on your workstation. Download the pack-
age here: OCI Download [http://www.theaceorb.com/downloads/1.4a/index.html]. Un-

http://www.ociweb.com
http://www.ociweb.com
http://www.dre.vanderbilt.edu/
http://www.dre.vanderbilt.edu/
http://www.dre.vanderbilt.edu/
http://www.theaceorb.com
http://www.theaceorb.com
http://www.theaceorb.com
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/commercial-support.html
http://www.cs.wustl.edu/~schmidt/commercial-support.html
http://www.cs.wustl.edu/~schmidt/commercial-support.html
http://www.theaceorb.com/downloads/1.4a/index.html
http://www.theaceorb.com/downloads/1.4a/index.html

The OROCOS Real-Time Toolkit Installation Guide

14

pack the tar-ball, and enter ACE_wrappers. Then do: export ACE_ROOT=$(pwd)
export TAO_ROOT=$(pwd)/TAO Configure ACE for Linux by doing: ln -s
ace/config-linux.h ace/config.h ln -s include/makeinclude/platform_linux.GNU in-
clude/makeinclude/platform_macros.GNU Finally, type: make cd TAO make cd orb-
svcs make This finishes your TAO build.

3.6.2. Configuring the RTT for TAO or OMNIORB

Orocos RTT defaults to TAO. If you want to use the OMNIORB implementation, run from
your build directory:

 cmake .. -DENABLE_CORBA=ON -DCORBA_IMPLEMENTATION=OMNIORB

To specify TAO explicitly (or change back) use:

 cmake .. -DENABLE_CORBA=ON -DCORBA_IMPLEMENTATION=TAO

The RTT will first try to detect your location of ACE and TAO using the ACE_ROOT and
TAO_ROOT variables and if these are not set, using the standard include paths. If TAO or
OMNIORB is found you can enable CORBA support (ENABLE_CORBA) within CMake.

3.6.3. Application Development with TAO

Once you compile and link your application with Orocos and with the CORBA functionality
enabled, you must provide the correct include and link flags in your own Makefile if TAO
and ACE are not installed in the default path. Then you must add:

• Compiling : -I/path/to/ACE_wrappers -I/path/to/ACE_wrappers/TAO -I/path/to/
ACE_wrappers/TAO/orbsvcs

This is the ACE build directory in case you use OCI's TAO packages. This option is not
needed if you used your distribution's TAO installation, in that case, TAO is in the standard
include path.

• Linking : -L/path/to/ACE_wrappers/lib -lTAO -lACE -lTAO_PortableServer -
lTAO_CosNaming

This is again the ACE build directory in case you use OCI's TAO packages. The first
option is not needed if you used your distribution's TAO installation, in that case, TAO
is in the standard library path.

Important

You also need to add /path/to/ACE_wrappers/lib to the /etc/ld.so.conf file and
rerun ldconfig, such that these libraries can be found. Or you can before you
start your application type

export LD_LIBRARY_PATH=/path/to/ACE_wrappers/lib

.

4. Cross Compiling Orocos
This section lists some points of attention when cross-compiling Orocos.

Run plain "cmake" or "ccmake" with the following options:

The OROCOS Real-Time Toolkit Installation Guide

15

 CC=cross-gcc CXX=cross-g++ LD=cross-ld cmake .. -DCROSS_COMPILE=cross-

and substitute the 'cross-' prefix with your target tripplet, for example with 'powerpc-lin-
ux-gnu-'. This works roughly when running on Linux stations, but is not the official 'CMake'
approach.

For having native cross compilation support, follow the instructions on the CMake Cross
Compiling page [http://www.cmake.org/Wiki/CMake_Cross_Compiling].

http://www.cmake.org/Wiki/CMake_Cross_Compiling
http://www.cmake.org/Wiki/CMake_Cross_Compiling
http://www.cmake.org/Wiki/CMake_Cross_Compiling

	The OROCOS Real-Time Toolkit Installation Guide
	Table of Contents
	1. Setting up your Orocos build environment
	1.1. Introduction
	1.1.1. Supported platforms (targets)
	1.1.2. The versioning scheme
	1.1.3. Dependencies on other Libraries

	1.2. Basic Real-Time Toolkit Installation on Windows-like systems
	1.3. Basic Real-Time Toolkit Installation on Unix-like systems

	2. Getting Started with the Code
	2.1. Examples
	2.2. Building components and applications
	2.3. What about main() ?

	3. Detailed Configuration using 'CMake'
	3.1. Real-Time Toolkit Build Configuration
	3.1.1. RTT with CORBA plugin

	3.2. Configuring the target Operating System
	3.3. Setting Build Compiler Flags
	3.4. Building for RTAI / LXRT
	3.4.1. RTAI settings
	3.4.2. Loading RTAI with LXRT
	3.4.3. Compiling Applications with LXRT

	3.5. Building for Xenomai (version 2.2.0 or newer)
	3.5.1. Loading Xenomai
	3.5.2. Compiling Applications with Xenomai

	3.6. Configuring for CORBA
	3.6.1. TAO installation (Optional)
	3.6.2. Configuring the RTT for TAO or OMNIORB
	3.6.3. Application Development with TAO

	4. Cross Compiling Orocos

