The Reporting Component

Copyright © 2006,2007,2008,2009 Peter Soetens, FMTC
Copyright © 2010-2012 Peter Soetens

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any lat-
er version published by the Free Software Foundation, with no Invariant Sec-
tions, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of
this license can be found at http://www.fsf.org/copyleft/fdl.html.

Table of Contents

IO g 1o [F o 1 o) o PR TR 1
I e T 0ol o] SRR 1
2. SELUP PrOCEAUIE ... et 2
2.1. Reporting Configuration File ..o 3
2.2. RePOIDAA SECHIONocuviieeeieeiesiie et 4
2.3. Reading the configuration file ..., 4
3. SCHPLING COMMANTScoviiiiiieieieeie et sre e 4
4. Forcing data reporting (SNAPSNOL).ooeererieiieseeee e 5

1. Introduction

This document describes the Orocos ReportingComponent for monitoring and cap-
turing data exchanged between Orocos components.

Note

Since version 2.6, the ReportingComponent has had a makeover to boost
efficiency and to rework non-periodic and snapshot modes. For periodic
reporting, the behavior remained the same.

1.1. Principle

Each Orocos component can have a number of data ports. One can configure the
reporting components such that one or more ports are captured of one or more peer
components. The reporting components can work sample rate based, event based, or
by requesting a snapshot of the current state. A number of fileformats can be selected.

The Reporter can use buffersin order to log all datait receives or just report the last
valuesin caseit is flooded with data. By default, the Reporter will setup unbuffered
connections and you need to override thismanually if you wish to deviate from that.

A common usage scenario of the ReportingComponent goes as follows. An Orocos
application is created which contains a reporting component and various other com-

http://www.fsf.org/copyleft/fdl.html

The Reporting Component

ponents. The reporting component is peer-connected to all components which must
be monitored. An XML file or script command defines which data ports to log of
each peer. When the reporting component is started, it reads the ports and writes the
exchanged datato afile at a given sample rate or when new datais written.

4—| Pitch
L L (—)—

G@_

R Yaw
eporter Data Flow Camera

(L Connections T Peer

o
0w

=
14]

SensorValues Position

C o
C O

Peer

SteeringSignals Velocity
Controller Data Flow Plant
Connections T
Peer

Figure 1. Component Reporting Example

One can not use the ReportingComponent directly but must use aderived component
which implementsthe method of writing out the data. There exists anumber variants:
FileReporting for writing data to a file and ConsoleReporting which prints the data
directly to the screen. The Netcdf Reporting writes the NetCDF file format. In order
to support other file formats, you can write your own marshaller.

2. Setup Procedure

The ReportingComponent is configured using a single XML file which sets the
component's properties and describes which components and ports to monitor.

In order to report data of other components, they must be added as a Peer to the
reporting component.

Thefollowing deployment XML file createsaReporting component asintheexample
above (Figure 1, “ Component Reporting Example’):

The Reporting Component

<si npl e name="Inport" type="string"><val ue>ocl </ val ue></ si npl e>
<struct nane="Reporter" type="COCL::Fil eReporting">

<I-- Note: Activity nay al so be non-periodic -->
<struct name="Activity" type="Activity">
<si npl e nane="Peri od" type="doubl e"><val ue>0. 01</val ue></si npl e>
<sinpl e nane="Priority" type="short"><val ue>0</val ue></si npl e>
<si npl e nane="Schedul er" type="string"><val ue>ORO_SCHED OTHER</
val ue></ si npl e>
</ struct >
<si npl e nanme="Aut oConf" type="bool ean"><val ue>1</val ue></si npl e>
<sinpl e nane="AutoStart" type="bool ean"><val ue>0</val ue></si npl e>
<si npl e nane="Aut oSave" type="bool ean"><val ue>1</val ue></si npl e>
<si npl e nane="LoadProperti es" type="string"><val ue>reporting. cpf</
val ue></ si npl e>
<l-- List all peers (uni-directional) -->
<struct nane="Peers" type="PropertyBag">
<sinpl e type="string"><val ue>Controll er</val ue></si npl e>
<sinpl e type="string"><val ue>Caner a</ val ue></ si npl e>
</ struct >

Note that the AutoSave flag is turned on (this is optional) to save the settings when
the Reporter component is cleaned up by the Deployer.

If the Reporter has a periodic activity, it will sample all itsinput ports and write out
the current values.

If the Reporter's activity isnon-periodic (Per i od omitted or zero), it will only write
out a new value when new data arrives on one of the connected ports. Ports that did
not get anew value will repeat the previous val ue.

Also the values of attributes or properties can be logged.

2.1. Reporting Configuration File

This is an example property file, to configure a Reporting component, once it was
created :

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE properties SYSTEM "cpf.dtd">
<properties>
<si mpl e name="W it eHeader" type="bool ean">
<description>Set to true to start each report with a header. </
descri pti on><val ue>1</ val ue>
</ si npl e>
<si nmpl e name="Synchroni ze" type="bool ean">
<description>Set to true if the tinestanp shoul d be synchronized with
the RTT: : Logger </ descri pti on><val ue>0</val ue>
</ si npl e>
<si mpl e name="W it eHeader" type="bool ean">
<description>Set to true to start each report with a header. </
descri pti on><val ue>1</ val ue>
</ si npl e>
<si npl e name="ReportFile" type="string">
<descri pti on>Locati on on disc to store the reports. </
descri pti on><val ue>reports. dat </ val ue>
</ si npl e>

<struct nane="ReportData" type="PropertyBag">

The Reporting Component

<descri pti on>A PropertyBag whi ch defines which ports or conponents to
report.</description>
<si npl e nane="Conponent" type="string">
<descri pti on>Report all output ports of this conponent. </
descri pti on><val ue>M/Peer 2</ val ue>
</ si npl e>
<si npl e name="Port" type="string">
<descri pti on>Report this output port</
descri pti on><val ue>MyPeer . D2Por t </ val ue>
</ si npl e>
<si npl e nane="Data" type="string">
<descri pti on>Report this property/attribute</
descri pti on><val ue>M/Peer . Hel | o</ val ue>
</ si npl e>
</struct>
</ properties>

If WiteHeader issetto true, a header will be written describing the file format
layout.

2.2. ReportData section

The Repor t Dat a struct describes the ports to monitor. As the example shows (see
also Figure 1, “Component Reporting Example”), acompl ete component can be mon-
itored (Camera) or specific ports of a peer component can be monitored. The report-
ing component can monitor any datatype aslong asit'stypkit isloaded in the Orocos
type system (use ROS rtt_rosnode or typegen to generate typekits).

2.3. Reading the configuration file

The property file of the reporting component must be read with the loadProperties
script method:

mar shal | i ng. | oadProperties("reporting.cpf")

You can not use r eadPr operti es() because only | oadPr operti es loads
your Repor t Dat a struct into the ReportingComponent.

With
marshal | i ng. witeProperties("reporting.cpf")

, the current configuration can be written to disk again.

3. Scripting commands

The scripting commands of the reporting components can be listed using the this
command on the TaskBrowser. Below is a snippet of the output:

RTT: : Met hod . bool reportConponent(string const& Conponent)
Add a peer Conponent and report all its data ports
Conponent : Nanme of the Conponent
RTT: : Met hod . bool reportData(string const& Conponent, string
const & Data)
Add a Conponent's Property or attribute for reporting
Conponent : Nanme of the Conponent
Data : Nane of the Data to report. A property's or attribute's nane.

The Reporting Component

RTT: : Met hod . bool reportPort(string const& Conponent, string
const & Port)
Add a Conponent's QutputPort for reporting.
Conmponent : Name of the Conponent
Port : Nanme of the Port.
RTT: : Met hod . bool screenConponent(string const& Conponent)
Di spl ay the variables and ports of a Conponent.
Conmponent : Name of the Conponent

RTT: : Met hod : void snapshot ()
Take a new shapshot of all data and cause themto be witten out.
RTT: : Met hod : bool unreport Conponent(string const& Conponent)

Renove all Conponent's data ports fromreporting.

Conmponent : Name of the Conponent

RTT: : Met hod : bool unreportData(string const& Conponent, string
const & Data)

Renove a Data object fromreporting.

Conmponent : Name of the Conponent

Data : Nanme of the property or attribute.

RTT: : Met hod : bool unreportPort(string const& Conponent, string
const & Port)

Renmove a Port from reporting.

Conmponent : Name of the Conponent

Port : Nanme of the Port.

4. Forcing data reporting (snapshot).

One can force that all current data ports are sampled and written out using the snap-
shot() operation. Thisonly workswhen the Reporter is non-periodic and the Snapshot

property is set to true.

	The Reporting Component
	Table of Contents
	1. Introduction
	1.1. Principle

	2. Setup Procedure
	2.1. Reporting Configuration File
	2.2. ReportData section
	2.3. Reading the configuration file

	3. Scripting commands
	4. Forcing data reporting (snapshot).

