The Deployment Component

Copyright © 2006,2007,2008,2009 Peter Soetens,
FMTC, Peter Soetens, The SourceWorks

Copyright © 2010,2011,2012 Peter Soetens, The SourceWorks

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any lat-
er version published by the Free Software Foundation, with no Invariant Sec-
tions, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of
this license can be found at http://www.fsf.org/copyleft/fdl.html.

Table of Contents

L. INEFOTUCTION ..ottt ettt st sbe e 1
I] 0 To | o] OSSP 1
1.2. The Orocos Deployer APPlICALIONccccevererenerieeerese e 2
2. Configuration ProCEAUIEccoeiiriririeiee e 5
2.1. Where to look for component [ibrariesccccooeveveneneneneneseseeeees 6
2.2. Including other XML fIlEScoiiiiiieise e 8
2.3. Which components to create and with which name.........c.ccccccovveveneee. 9
2.4. How each compoNnent iS SELUDc.evereeierierie e 9
2.5. CORBA EXIENSIONScviveiirieriesiesieeieee e st st s sbe s se e sse s e s 16
2.6. Connecting to CORBA COMPONENESccveruirierieririeieneesee e 17
3. Setting up a deployable component library ... 17
3.1 AdItioNal COEcceeeiieieriesiereeee e 18
3.2. Compiling and linking a component library ..., 19

1. Introduction

This document describes the Orocos DeploymentComponent for loading and config-
uring other components using an Orocos script or XML file. This component can
only load components into the same process.

1.1. Principle

Each Orocos component can be compiled asashared, dynamic loadablelibrary. Each
such library can define a specia function which will allow the DeploymentCompo-
nent to create new instances of a component type. This principle is analogous to the
plugin mechanism found in web browsers or other desktop applications.

A common usage scenario of the DeploymentComponent goes as follows. An ini-
tial Orocos application is created which contains only the DeploymentComponent
and the TaskBrowser. When the application is started, the TaskBrowser prompts for
commands which can be given to the DeploymentComponent.

http://www.fsf.org/copyleft/fdl.html

The Deployment Component

For each component:
Component - Prolp.erty.l file
database - Activity info
(file folders) - Peer connections
- Port connections
@ 2. import - Scripts to load
Deployment <XML>
server <:| configuration
1. load
S.Jconﬂgure
B
% | RealTime
application
4. execute (in server)

Componentsare located on your disk using the'import' statement, loaded using 'load-
Components' and configured using 'configureComponents. These three steps can be
described in an XML file format, a script or using the command prompt.

Figure 1. Component Deployment Overview

Figure 1, “Component Deployment Overview” shows the basic steps. An XML
file contains instructions for the DeploymentComponent where to look for com-
ponents ('import statements), which component types to create, which name they
must be given and how their interna thread is configured (priorities, periods,...).
Furthermore this file describes the network interconnections between all com-
ponents and how data must be relayed from one component to another. The
| oadConponents("file.xm ™) method reads this file, looks up the com-
ponents, creates them and stores the configuration parameters. One can apply
the configuration (threads, properties, data connections,...) by calling confi g-
ur eConponent s() . After this step, the components (and the application as a
whole) can be started with st art Conponent s() . In order to do these steps
at once, you can just write ki ckStart ("file.xm ™) orin case of a script,
runScript("file.ops")

The configuration does not need to be stored in XML format. One can apply the same
configuration by using the scripting methods of the DeploymentComponent at the
console prompt, or by listing them in an Orocos script.

1.2. The Orocos Deployer Application

The Orocos Component Library provides a number of ready to use applications for
loading and starting components using the DeployementComponent.

The main application isthe deployer -<tar get> program, where <target> isreplaced
by the Operating System target (OROCOS_TARGET) for which you want to load

The Deployment Component

components, for example deployer -gnulinux. The program can take an optional ar-
gument - -start <fil ename> which describes the components to load and is
used to kick-start the application. The XML and script specifications are described
below. When the application is started, the TaskBrowser is presented to the user for
receiving interactive commands. The name of the DeploymentComponent is by de-
fault 'Deployer'. In order to change this name, use for example deployer -gnulinux
NewDeployer Name. See also deployer-<tar get> --help for an overview of the op-
tions.

Note

In case you set the OROCOS TARGET environment variable to the tar-
get you want to use (for example "gnulinux"), you can also start the de-
ployer command (which isashell script), which will in turn start the de-
ployer-$OROCOS TARGET program. If no OROCOS_TARGET has
been set, it will refuse to start.

Similar scripts are available for rttscript, cdeployer, ctaskbrowser and
deployer-corba.

There are four related programs to the deployer application.

* rttscript-<target>: like above but does not show a TaskBrowser prompt. When
it is finished deploying, it undeploys and quits. You'll need to use a crafted .ops
script to hold-off the quiting until your applications needsto. Useful for doing little
tasks from the command line, unit tests or another script.

» cdeployer-<target>: like above but startsthe CORBA enabled non-interactive de-
ployer application. Y ou are not presented with a TaskBrowser prompt, but the cde-
ployer tries to connect to a CORBA Naming Service, and if that fails, prints the
IOR to afile and to the screen.

 ctaskbrowser-<target> ComponentName]l OR: Connects to a remote compo-
nent (like the cdeployer above) using the CORBA 10R address or using the COR-
BA Naming Service using ComponentName.

» deployer-corba-<target>: Combines the cdeployer and deployer applications. It
presents the TaskBrowser console and sets up a CORBA server. It can thus be
commanded locally and accessed over a network. If you quit the TaskBrowser
prompt, the application exits.

The completelist of optionsfor the deployer, cdepl oyer and depl oyer-corbaprograms
are:

» --help Show program usage
o --gtart xml-or-script-file (aso -s) Deploy from an xml-file (.xml or .cpf) or script-

file (.opsor .osd). This option may be given multiple times, in which case the xml
and script fileswill be processed in the same order as on the command line.

3

The Deployment Component

» --log-level level (also -1) Sets the Orocos log level to level. The level parameter
should be one of : Never, Fatal, Critical, Error, Warning, Info, Debug, or Realtime.
The parameter is case-insensitive. Warning: this overridesthe ORO_LOGLEVEL
environment variable.

» --no-consolelog Turn off logging to the console (will still log to ‘orocos.log’)

» --daemon (aso -d) run the deployer as a background process. Will not open up a
TaskBrowser prompt.

» --Deployer Name deployer-name Name of deployer component (the --Deployer-
Name flag is optional)

Additionally, any CORBA options can be passed through these programs by adding
a"--" command line option, followed by the CORBA -specific options.

Some examples are
depl oyer-corba --1o0g-1evel warning -s myfile.xm
Sets the Orocoslog level to war ni ng and deploysfilenmyfi |l e. xm
depl oyer-corba -1 fatal --no-consolelog -s leftfile.xm LeftDeployer

Sets the Orocos log level to f at al , turns off al logging to console, names the de-
ployer Lef t Depl oyer and deploysfilel eftfil e. xni

depl oyer-corba -1 fatal --no-consolelog -s leftfile.xm LeftDeployer
- -ORBIni t Ref NaneServi ce=corbal oc:iiop: me. m ne. honme: 2809/ NaneSer vi ce -
ORBFooBar 1

Aswith the previous example, and also passes some options through to the CORBA
layer.

The Deployment Component

2. Configuration Procedure

import » loadLibrary =
| hext

loadComponents » loadComponent
next

Y
configureComponents update Properties -
¥
) J create Activity
\J next

= connect Peers load Program

next * load StateMachine
¥
— connect Ports AutoConf:
configure() e
L

startComponents > AutoStart |
I next

The Deployment component APl consists of import, loadComponents, configure-
Components and startComponents.

Figure 2. Deployment Procedure

The configuration format defines the instructions one can use to load and configure
Orocos components. One can divide the instructions in three groups:

* Whereto look for component libraries and plugins
» Which components to create and with which name
» How each component is setup

Let's demonstrate this principle with a simple application example as shown in Fig-
ure 3, “Deployment Example Application”. We want to setup an application with
three components. a Reporting component, a'Controller' and a'Plant’. The Plant com-
ponent provides access to the hardware, the Controller component contains the con-

The Deployment Component

trol algorithm. The Reporting component is here to sense the values exchanged and
write them to afile.

Y . executes
PeriodicActivity The Reporter is configured
using a separate XML file
-200Hz . . .
- which specifies which Ports
-Priority: 0 .
of a Peer to monitor.
-Scheduler: not RT
Reporter
PeriodicActivity NonPeriodicActivity
-1000Hz -Not periodic
executes | -Priority: 99 -Priority: O executes
-Scheduler: RT -Scheduler: RT
3 SensorValues| Position
Peer —C O—
SteeringSignals Velocity
Controller Data Flow Plant
Connections T
Peer

A Reporter component monitors communication between Plant and Controller. The
Deployment component itself is not shown.

Figure 3. Deployment Example Application

2.1. Where to look for component libraries

The pat h andi nport statements are the two ways to specify where components
can be found, and which component libraries to import.

Imagine that you have this directory structure:

/ opt / r obot : your orocos install path (lib, include,
etc)
[opt/robot/lib/orocos/ : orocos installed conponents

/plugins : services and other plugins

/types . typekits and transports

And that you have a project 'robot-13' which is installed there as well, but in a sub-
directory of the/ opt / r obot /1i b/ or ocos directory:

[opt/robot/lib/orocos/robot-13 . robot-13 conponents
/robot-13/plugins : robot-13 services and ot her

pl ugi ns
/ robot - 13/t ypes : robot-13 typekits and transports

The Deployment Component

The RTT Plugins manual describesthistypical directory structure more in detail.

The pat h function extends the default search path with new directories to look for
components. In addition, it imports every component library found in that directory,
but without recursing into sub directories. It does not cause any component to be cre-
ated, but allows the DeploymentComponent to know where the component libraries
arelocated. Thisfunction may be called for multiple paths, or providetheminacolon
or semi-colon separated list.

In XML, the path statement looks like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE properties SYSTEM "cpf.dtd">
<properties>

<l-- ... =-->

<I-- Note: capital 'P': -->
<si npl e nane="Pat h" type="string"><val ue>/opt/robot/|ib/orocos</val ue></
si npl e>

</ properties>

The script method equivalent is:

/! note: small 'p':
pat h("/opt/robot/Iib/orocos")

Each component library (.so, .dll,...) inthedirectory / opt / robot / | i b/ or ocos
is imported. If this directory contains a pl ugi ns or t ypes subdirectory, the li-
braries in these directories are imported as well. Once you installed multiple compo-
nent libraries in subdirectories of your path, you must use the | nport statement to
load these. In addition, when you use the ROS packaging system, you can use | m
por t inorder toload the componentsfrom aros package'sl i b/ or ocos directory,
and all itsdependencies. Inthat case, only theROS_PACKAGE_PATH environment
variable needs to be set.

In XML, the import statement looks like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE properti es SYSTEM "cpf.dtd">
<properties>

<l-- ... -->

<I-- Note: capital '"I': -->
<si npl e nane="|nport" type="string"><val ue>robot - 13</val ue></si npl e>

</ properties>

The script method equivalent is:

[/l note: small "i':
i mport ("robot-13")

All component libraries found in <pat h>/ r obot - 13 (or the ROS package 'ro-
bot-13") and their plugins/types are loaded because of this statement. The import and
path statements only allow you to load Orocos plugin or component libraries. In case
the import statement contains a path to an existing library file, that file will be loaded
directly instead of looking it up in the search paths.

The Deployment Component

See the Plugin manual for creating plugin libraries or the end of this manual for cre-
ating component libraries. Regular libraries (like libfoo.so or win32.dll,...) can not
be loaded. If alibrary contains one or more Orocos components, the contained com-
ponent types become available in the next step.

To see the effects of the import function, the available types can be queried by in-
voking thedi spl ayConponent Types (script) method:

(type 'Is' for context info) :displayConponent Types()
Got :di spl ayConponent Types()
=1 can create the follow ng conmponent types:
TaskCont ext
COCL: : Consol eReporting
COCL: : Fi | eReporting
OCL: : Hel | oWorl d
Robot 13: : Control | er
Robot 13: : Di agnosti cs
(voi d)

Summarized:
» pat h pre-loads component libraries and sets the search path for subdirectories

* i nmport loads component libraries from subdirectories in the search path OR a
specific file directly

» di spl ayConponent Types shows which components have been found.

2.2. Including other XML files

In order to manage your XML files, one XML file can include another with the 'In-
clude' directive. The include directive may occur at any place in the XML file (but
under <properties>) and will be processed as-if the included file is inserted at that
point.

. Warning
This option is new and experimental and may change in meaning and/
or name in the future. When using the Xerces XML parser in Orocos,
you may also want to use the standard XML way for including external
documents, as documented on the Orocos Wiki.

In XML, the include statement looks like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE properties SYSTEM "cpf.dtd">
<properties>

<l-- ... -->

<si mpl e nanme="1ncl ude" type="string"><val ue>default-inports. xm </
val ue></ si npl e>
<si npl e name="1ncl ude" type="string"><val ue>def aul t - conponents. xm </

val ue></ si npl e>

</ properties>

The Deployment Component

2.3. Which components to create and with
which name

Import makes components available, but does not create an specific instance yet. In
order to add a component of a given type to the current application, use the | oad-
Conponent function:

In XML, the loadComponent statement of a reporting component would look like:

<?xm version="1.0" encodi ng="UTF- 8" 2>
<! DOCTYPE properties SYSTEM "cpf.dtd">
<properties>
<l-- ... |nport statenents | ocate Orocos reporting library ... -->
<sinpl e name="Inport" type="string"><val ue>/usr/|ocal/lib/orocos</
val ue></si npl e>

<struct name="Reporter" type="CCL::Fil eReporting">
</ struct >

</ properties>

Thisline causes the DeploymentComponent to look up the OCL ::FileReporting type,
and if found, creates a component of that type with the name "Reporter”. This com-
ponent is added as a peer component to the DeploymentComponent such that it be-
comes immediately available to the application. This step can be repeated any num-
ber of times with any number of components or names.

Alternatively, the type may be a filename if that file contains only one component,
which is exported using the ORO_CREATE_COVPONENT macro (see below).

The script method equivaent is:
| oadConponent ("Reporter”, "OCL::Fil eReporting")

2.4. How each component is setup

Now that one or more component instances are created, you can configure them by
connecting components, assigning threads, configuration values and program scripts.
Again, you can do thisusing XML or the scripting language.

Below is an example of about all options you can use. They are explained in the
sections below.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE properties SYSTEM "cpf.dtd">
<properties>
<si npl e nanme="1|nport" type="string"><val ue>/usr/local/lib/orocos</
val ue></ si npl e>

<l-- You can set per data flow connection policies -->

<struct nane="Sensor Val uesConnecti on" type="ConnPolicy">
<l-- Type is 'shared data' or buffered: DATA: 0 , BUFFER 1 -->
<si npl e nane="type" type="short"><val ue>1</val ue></si npl e>

<I-- buffer sizeis 12 -->
<si nmpl e name="si ze" type="short"><val ue>12</val ue></si npl e>
</ struct >
<I'-- You can repeat this struct for each connection below ... -->

The Deployment Component

<struct nane="Reporter" type="COCL::Fil eReporting">

<struct name="Activity" type="Activity">
<si npl e nane="Peri od" type="doubl e"><val ue>0. 005</ val ue></si npl e>
<sinple nanme="Priority" type="short"><val ue>0</val ue></si npl e>
<si npl e nane="Schedul er" type="string"><val ue>ORO_SCHED OTHER</
val ue></ si npl e>
</ struct >

<si npl e nanme="Aut oConf" type="bool ean"><val ue>1</val ue></si npl e>
<si npl e nanme="Aut oSave" type="bool ean"><val ue>1</val ue></si npl e>

<si npl e name="LoadProperties" type="string"><val ue>file-
reporting. cpf </ val ue></ si npl e>

<struct nane="Peers" type="PropertyBag">
<sinple type="string"><val ue>Controll er</val ue></si npl e>
</ struct >
</ struct >

<struct name="Controller" type="ControllerType">

<struct name="Activity" type="Activity">
<si npl e nane="Peri od" type="doubl e"><val ue>0. 001</ val ue></si npl e>
<sinmple name="Priority" type="short"><val ue>99</val ue></si npl e>
<si npl e nanme="Schedul er" type="string"><val ue>ORO_SCHED_ RT</ val ue></
si npl e>
</ struct >

<I-- |oads the 'scripting' service (aka plugin) in this conponent -->
<si nmpl e name="Servi ce" type="string"><val ue>scri pti ng</val ue></si npl e>

<si npl e nanme="Aut oConf" type="bool ean"><val ue>1</val ue></si npl e>
<si npl e nane="AutoStart" type="bool ean"><val ue>1</val ue></si npl e>
<si npl e nanme="Aut oConnect" type="bool ean"><val ue>1</val ue></si npl e>

<I-- This section allows to define properties without using a file
(see bel ow)
These properties can be overriden in the property files bel ow. --
>
<struct name="Properties" type="PropertyBag">
<si nmpl e nanme="K" type="doubl e"><val ue>1. 0</ val ue></ si npl e>
</ struct >
<I-- Note: difference between 'PropertyFile' and
' Updat eProperties' (see below) -->
<si npl e name="PropertyFile" type="string"><val ue>controll er-main. cpf</
val ue></ si npl e>
<si npl e nanme="Updat eProperties" type="string"><val ue>controll er-
opt s. cpf </ val ue></si npl e>

<struct nanme="Ports" type="PropertyBag">
<l-- Note: the value is the nanme of the connection of which this
port gets part.
Al ports that share the sanme connection name are connected to
each ot her
The connection policy for SensorVal uesConnecti on was defined
above. If no
policy is given, the default (DATA, LOCK_FREE) is used
0o
<si npl e nane="Sensor Val ues"
type="string"><val ue>Sensor Val uesConnect i on</ val ue></ si npl e>
<si nmpl e name=" St eeri ngSi gnal s"
type="string"><val ue>Dri veConnect i on</ val ue></ si npl e>
</struct>

10

The Deployment Component

2.4.1.

<struct nane="Peers" type="PropertyBag">
<sinmpl e type="string"><val ue>Pl ant </ val ue></ si npl e>
</ struct >

<si npl e name="RunScript" type="string"><val ue>controll er-program ops</
val ue></ si npl e>
<si npl e nane="RunScript" type="string"><val ue>controll er-states.ops</
val ue></ si npl e>
</ struct >

<struct nane="Plant" type="Pl ant Type">
<struct name="Activity" type="Activity">
<sinpl e nanme="Priority" type="short"><val ue>0</val ue></si npl e>
<si npl e nanme="Schedul er" type="string"><val ue>ORO_SCHED_ RT</ val ue></
si npl e>
</ struct >
<sinpl e nane="AutoStart" type="bool ean"><val ue>1</val ue></si npl e>
<struct nanme="Ports" type="PropertyBag">
<si npl e nane="Position"
type="string"><val ue>Sensor Val uesConnect i on</ val ue></ si npl e>
<si mpl e nane="Vel ocity" type="string"><val ue>Dri veConnecti on</
val ue></ si npl e>
</ struct >
</ struct >
</ properties>

Thread, period, priority and scheduler.

Thefirst section of all three components setsup the active behaviour of the component
inthe Act i vi ty element.

<struct name="Activity" type="Activity">
<si npl e nane="Peri od" type="doubl e"><val ue>0. 005</ val ue></si npl e>
<sinmple name="Priority" type="short"><val ue>0</val ue></si npl e>
<si nmpl e nane="Schedul er" type="string"><val ue>ORO_SCHED OTHER</
val ue></ si npl e>
</ struct >

Both have periodic activities, which run with agiven period, priority and in a sched-
uler. The Controller and Plant run in areal-time scheduler, the Reporter doesn't. The
activities are created and attached to each component during theconf i gur eCom
ponent s() step of the DeploymentComponent. Possible types of activities are

Peri odi cActivity,

Act i vi t y (the standard one),

Sequenti al Activity and

Sl aveActivity.

Thelatter allowsacomponent to be executed by amaster component. Y ou can specify
amaster component usingtheMast er smpleelementintheAct i vi ty struct. The
DeploymentComponent makes slaves automatically a peer of their master, but does
nothing more. le, the code in the master's updateHook() must call trigger on each of
its slaves that are peers.

11

The Deployment Component

2.4.2. Loading Services or Plugins.

You can load any number of plugins into a component. A plugin may also add a
Service object to a component's interface, but thisis optional.

<!-- |oads the 'scripting' service in this conponent -->
<si npl e nanme="Servi ce" type="string"><val ue>scri pting</val ue></si npl e>

<I-- |oads the '"trajectory' plugin in this conponent -->
<si npl e nanme="Pl ugi n" type="string"><val ue>traj ectory</val ue></si npl e>

TheSer vi ce or Pl ugi n element may occur any number of timesin the component
struct to list a specific service or plugin that must be loaded in that component. For
example, in order to execute a script in your component, you may load the 'scripting'
service. Or in order to serialize its properties to XML, you'll need the 'marshalling'
service. These services add new functions to your component which provide that
functionality.

A service promisses that it is available as a Service object in the component's inter-
face. A plugin doesn't have this obligation, and can have any desired effect on your
component.

Y ou can check the available services or plugins (ie discovered by the Deployment-
Component) with ".services or ".plugins and load a service from the TaskBrowser
prompt in the current visited component with

. provi de
<servi cenane>

. The Deployer has the equivalent function which looks like this:
| oadSer vi ce("Reporter", "scripting")

Where Reporter must be a peer of the Deployer.

2.4.3. Auto-Configuration and Auto-Starting compo-
nents.

The next section of the Controller contains the Aut oConf and Aut oSt art ele-
ments.

<si nmpl e name="Aut oConf" type="bool ean"><val ue>1</ val ue></ si npl e>
<si npl e name="AutoStart" type="bool ean"><val ue>1</val ue></si npl e>
<si npl e name="Aut oConnect" type="bool ean"><val ue>1</val ue></si npl e>

If Aut oConf is set to 1, the DeploymentComponent will call the component's
configure() method during conf i gur eConponent s() , after the properties are
loaded. If Aut oSt art isset to 1, the component's start() method will be called dur-
ing st art Conponent s() . By default Aut oConf and Aut oSt ar t are O (off).

Thereisno literal alternative for AutoConf in scripting. Just usetheconf i gur e()
operation of your component in order to configure it:

12

The Deployment Component

Control |l er.configure()
Control |l er.start()

2.4.4. Connecting Data Ports

The Por t s struct describes which ports of this component participate in which data
flow connection.

<struct nane="Ports" type="PropertyBag">
<si npl e nane="Position"
type="string"><val ue>Sensor Val uesConnect i on</ val ue></ si npl e>
<si mpl e name="Vel ocity" type="string"><val ue>Dri veConnecti on</
val ue></ si npl e>
</ struct >

So for each element in this struct, the name of the element is the port name, and
the value is the name of the connection it belongs to. Ports with equal connection
names are connected to each other. Ports which are not listed will not be connected
to anything. If ports of different data types are being connected, the configuration
phase will fail. Y ou can tune each connection using a struct of type ConnPol i cy
with the name of the connection. The allowed fields in this struct are the same asin
the C++ API, see ConnPolicy.

<I-- You can set per data flow connection policies -->

<struct nanme="Sensor Val uesConnecti on" type="ConnPolicy">
<I-- Type is 'shared data' or buffered: DATA: 0 , BUFFER 1 -->
<si mpl e nanme="type" type="short"><val ue>1</val ue></si npl e>

<!-- buffer sizeis 12 -->
<si npl e name="si ze" type="short"><val ue>12</val ue></si npl e>
</ struct >
<I-- You can repeat this struct for each connection below ... -->

In this example, the SensorV aluesConnection is configured, which is used to connect
the Controller's SensorVa ues port with the Plant's Position port.

L ooking at the Ports section of the Controller above, it has two data portslisted (Sen-
sorVaues and SteeringSignals), which are added to two connection objects. These
connections show up in the Plant component's Por t s section aswell. And it shows
that the SensorVa ues Port is connected to the Position Port and the SteeringSignals
Port is connected to the Velocity Port. If other component's ports in the same file
refer to the same connection object, the ports are connected to each other by the De-
ploymentComponent during the conf i gur eConponent s() step.

The Aut oConnect element indicatesif the component's data ports should be auto-
matically connected to peer ports which have the same name and type. Thisflag is
read during the conf i gur eConponent s() step of the DeploymentComponent.
Both components must have the Aut oConnect element set to 1 and one must be
peer of the other in order to trigger automatic connection of ports. It ispossible that a
port is connected to one component using the Ports struct and to another component
using the Aut oConnect flag. If an automatic port connection fails, the configura-

13

The Deployment Component

2.4.5.

tion procedure will not fail and just continue. An error message may be logged. By
default, Aut oConnect isO0 (off).

Note

AutoConnect isonly useful for simple applications, use the explicit 'Ports
connection method to connect different named ports to each other !

In scripting, you can usethe ConnPol i cy struct for connecting ports. For example:

var ConnPolicy cp

cp.type = BUFFER

cp.size = 10 // buffer of size 10

connect ("Plant. Position", "Controller. SensorVal ues", cp)
Y ou may re-use the 'cp' object multiple times for different connections. Streams can
be created likewise, with the st r eamoperation of the deployer, which only takes a
port and a connection policy as argument.

Setting Properties (component parameters)

ThePr oper ti es struct allowsto configure acomponent's propertiesfrom themain
XML file. These values can be overridden by the listed property files:

<l-- You can repeat this struct for each connection below ... -->
<struct name="Properties" type="PropertyBag">
<si mpl e name="K" type="doubl e"><val ue>1. 0</ val ue></ si npl e>
</ struct >

The Propert yFi | e element specifies from which XML file each component is
configured and this file must contain values for al properties of the component.

In case you only want to update part of the properties, usethe Updat ePr operti es
element.

<si nmpl e name="PropertyFile" type="string"><val ue>controll er-min. cpf</
val ue></ si npl e>

<si mpl e nanme="Updat eProperties" type="string"><val ue>controll er-
opt s. cpf </ val ue></si npl e>

Finaly, it isalso possible to load and create new properties from afileusing Load-
Pr operti es the Reporting component requires this for example:

<si nmpl e name="LoadProperties" type="string"><val ue>file-
reporting. cpf </ val ue></ si npl e>

Y ou can use any number or combination of these elements. The order is respected.
The properties are read during the conf i gur eConponent s() step of the De-
ploymentComponent. When the Aut oSav e property isturned on, thelisted property
filewill be saved again with the values of the Component, just before the Component
iscl eanup() .

14

The Deployment Component

2.4.6.

2.4.7.

In scripting, you can use the mar shal | i ng service in order to do the property
loading for you. For example:

| oadSer vi ce(" MyConponent ", "nmar shal | i ng")
MyConponent . mar shal | i ng. readProperties("file.cpf")

Every component that needsto read/write propertiesfrom afile needsthe marshalling
service. You can't use the marshalling service of the Deployment Component, since
that service would read/write the properties of the Deployment Component itself.

Setting up peer-to-peer relations
The last section of the Reporter component listsits peers.

<struct nanme="Peers" type="PropertyBag">
<sinpl e type="string"><val ue>Controll er</val ue></si npl e>
</ struct >

The Reporter has one peer, the Controller, which allows the Reporter component to
scan and use the interface of the Controller component. For example, it will discover
which ports Controller exposes and be able to create connections to them, without
the need of a supervisor to do so.

The Controller component hasthe Plant as peer, which meansit can query and control
it. For example, use its services, start and stop it etc.

Loading and Running Orocos Program Scripts

Note

This section isfor starting scripts from the XML file. In case you want to
use a script directly (or after an XML file), you can use the -s option of
the deployer to let it execute that script.

The Controller has at the end two additional RunScr i pt elementsdescribing which
script files must be loaded and executed into that component.

<si npl e name="RunScript" type="string"><val ue>controll er-program ops</
val ue></ si npl e>

<si nmpl e nanme="RunScript" type="string"><val ue>controll er-states.ops</
val ue></si npl e>

Any number of scripts can be loaded and they are loaded in the order of the XML
file. Each script may contain any number of statements, functions, program scripts
or state machines. Running these scriptsis again done during theconf i gur eCom
ponent s() step.

If you want to have a program or statemachine started you need to do so at the end
of the script file itself, by adding

programmane. start ()
st at emachi ne_i nst ance. acti vat e()
st at emachi ne_i nstance. start ()

15

The Deployment Component

statements. Be aware that this is done during the configuration phase of your com-
ponents, so before updateHook() is executed. Y ou are however allowed to start your
component from the script by merely calling

start ()
at the right place of your script.

Y ou may chooseto implement the whole depl oyment scenario in such ascript, instead
of the XML file presented in this manual. In that case, you need to load this script in
the Deployer itself usingthe-s fi | ename. ops command line option, or using
asmall XML file that only contains this code:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE properti es SYSTEM "cpf.dtd">

<properties>
<struct nanme="Depl oyer" type="PropertyBag">

<l-- set a period -->
<struct name="Activity" type="Activity">
<si nmpl e name="Peri od" type="doubl e"><val ue>0. 01</ val ue></ si npl e>

</struct>
<l-- run a script -->
<si npl e nane="RunScri pt" type="string"><val ue>scriptfile.ops</val ue></
si npl e>
</struct>

</ properties>

It is advised to set a period for the activity of a component executing scripts, since
scripts need periodic execution in case they have to wait for an operation to com-
plete. Alternatively, you can set the period at the top of your script file by adding
the statement:

set Peri od(0.01)
instead of specifying it inthe XML file.

2.5. CORBA extensions

Thedeployer XML format allowstwo CORBA specific boolean properties, which are
optional: Ser ver (defaultsto'0’) and UseNami ngSer vi ce (defaultsto'l’). These
properties are only used when you use the CORBA enabled cdeployer -<tar get> or
deployer -cor ba-<tar get> applications.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE properties SYSTEM "cpf.dtd">
<properties>

<l-- ... -->

<struct nanme="Reporter" type="COCL::Fil eReporting">

<l-- CORBA specific extensions -->

<si nmpl e nane="Server" type="bool ean"><val ue>1</val ue></si npl e>

<si nmpl e nanme="UseNami ngServi ce" type="bool ean"><val ue>1</val ue></
si npl e>

16

The Deployment Component

</ struct>

</ properties>

By default, only the 'Deployer’ starts as a CORBA server. Y ou can have other com-
ponents to start as a server as well by setting the Ser ver property to 1. By defaullt,
the component will try to use the CORBA Naming Service to register its name. If
thisis not wanted, set the UseNam ngSer vi ce property to 0.

The script method equivalent of the above XML construct is:

server ("Reporter", true)

Which will create a CORBA server for the Reporter peer, after the Reporter was
loaded with loadComponent().

2.6. Connecting to CORBA components

The corba enabled deployers allow to create a proxy for a remote component using
the name service, the IOR or the IOR file.

Say you have a remote Orocos component with the name ‘MyComponent'. It was
created in one corba enabled deployer application with the Ser ver property set to
1. Y ou can connect to it from another deployer application by using the XML syntax:

<l-- Uses CORBA Nami ng Service to |ookup ' M/conponent' -->
<struct nane="M/Conponent" type="CORBA">
</ struct >

<I-- Uses ICRfile to | ookup ' Myconponent' -->
<struct name="M/Conponent.ior" type="|ORFile">

</ struct>

<I-- Uses literal IOR to | ookup ' Myconponent' -->
<struct nane="IOR" type="IOR'>

</ struct>

Which will makethiscomponent availablein your current application, using the same
name asthe original. This also worksfor the scripting deployer command ‘loadCom-
ponent’. For example, you can type in the TaskBrowser:

| oadConponent (" MyConponent”, " CORBA")
| oadConponent (" MyConponent.ior", "IORFile")
| oadConponent ("IOR: ", "IORY)

which alowsto quickly connect to aremote component once you can copy/paste the
IOR into the console.

3. Setting up a deployable component
library

This section explains how to prepare a component library for deployment. It is
demonstrated with an example.

17

The Deployment Component

Note

The or ocr eat e- pkg script of OCL does al the setup work for you.
This section is given for reference use only.

3.1. Additional Code

There exist three C macros for preparing a component library. The ssmplest way is
when the resulting library will contain only one component type. Assume we have
written the Helloworld component (in the OCL C++ namespace) which is com-
piled in the or ocos- hel | owor | d. so library. The following code is added to
HelloWorld.cpp:

#i ncl ude "Hel | oWor | d. hpp"
#i ncl ude <ocl / Conponent . hpp>

/[* ... Hello World inplenentation file ... */

/1 You nust specify the namespace:
ORO_CREATE_COVPONENT(OCL: : Hel | oWor 1 d)

This macro inserts afunction into the library which will allow the DeploymentCom-
ponent to create OCL ::HelloWorld components.

In case multiple components are defined in the same library, two other macros must
be used. One macro for each component type and one macro once for the whole li-
brary. Say your library has components NS::Conponent X and NS::Conponent Z
in namespace NS. In order to export both components, you could write in
Conponent X. cpp:

#i ncl ude " Component X. hpp"
#i ncl ude <ocl / Conponent . hpp>

/* ... Conponent X i npl ementation file ... */
/'l once:

ORO_CREATE_COVPONENT_LI BRARY()

/'l For the Conponent X type:

ORO_LI ST_COVPONENT_TYPE(NS: : Conponent X)

and in Conponent Y. cpp the same but without the
ORO_CREATE_COMPONENT_LIBRARY macro:

#i ncl ude " Conponent Y. hpp"
#i ncl ude <ocl / Conponent . hpp>

[* ... ConponentY inplenmentation file ... */

/! For the ConponentY type:
ORO _LI ST_COVPONENT_TYPE(NS:: ConponentY)

For each additional component in the same library, the
ORO _LIST _COMPONENT_TYPE macro is added. It is alowed to put al the
ORO _LIST_COMPONENT_TYPE macrosinasinglefile.

18

The Deployment Component

Note

You may not link multiple libraries that use
ORO_CREATE_COMPONENT, since only one of the component types
will be found.

Note

ORO_CREATE_COMPONENT_LIBRARY() replaces the pre-2.3.0
ORO_CREATE_COMPONENT _TYPE() macro. The old macro is still
kept for backwards compatibility, both versions have the exact same re-
sult.

3.2. Compiling and linking a component li-

brary

In order to have aworking library, care must be taken of the compilation flags. Y ou
may compileyour library static or shared. But astatic library will not be dynamically
loadable. In the final executable the DeploymentComponent will be able to find the
linked in components and setup the application using the XML file.

!

I mportant

The macros need some help to figure out if you are compiling a shared
or static library. Y ou need to define the RTT_COMPONENT macro (see
below) when compiling for a shared library. If this macro is not defined,
it isassumed that you are compiling for a static library.

The compilation flag of a component for a shared library might look like:

CFLAGS= -2 -Wall -fPIC - DRTT_COVPONENT
LDFLAGS= -fPIC

The compilation flag of a component for a static library lacks both options :

CFLAGS= -2 -\al |
LDFLAGS=

Note

If you use CMake with the UseOrocos.cmake macros, you don't need any
of this manual setup. The Orocos macros set the right flags for you.

19

	The Deployment Component
	Table of Contents
	1. Introduction
	1.1. Principle
	1.2. The Orocos Deployer Application

	2. Configuration Procedure
	2.1. Where to look for component libraries
	2.2. Including other XML files
	2.3. Which components to create and with which name
	2.4. How each component is setup
	2.4.1. Thread, period, priority and scheduler.
	2.4.2. Loading Services or Plugins.
	2.4.3. Auto-Configuration and Auto-Starting components.
	2.4.4. Connecting Data Ports
	2.4.5. Setting Properties (component parameters)
	2.4.6. Setting up peer-to-peer relations
	2.4.7. Loading and Running Orocos Program Scripts

	2.5. CORBA extensions
	2.6. Connecting to CORBA components

	3. Setting up a deployable component library
	3.1. Additional Code
	3.2. Compiling and linking a component library

