
r_arm_pid_controller

time

sources
position

velocity

sinks
position

velocity

time

sources
effort

sinks
position

velocity

P
ID

 c
o
n

tr
o
lle

r

r_arm_follow_joint_traj

time

sources
position

velocity

sinks
position

velocity

R
O

S
 a

ct
io

n
 i
n
te

rf
a
ce

sp
lin

e
 i
n
te

rp
o
la

ti
o
n

sp
lin

e
 s

p
lic

in
g

mobile_base_controller

R
O

S
 a

ct
io

n
 i
n
te

rf
a
ce

time

sinks
position

velocity

sources
velocity

ptu_follow_joint_traj

R
O

S
 a

ct
io

n
 i
n
te

rf
a
ce

sp
lin

e
 i
n
te

rp
o
la

ti
o
n

sp
lin

e
 s

p
lic

in
g

time

sinks
position

velocity

sources
position

velocity

time

mobile_base_controller

sources
position

velocity

sinks
velocity

ptu_follow_joint_traj

sinks
position

velocity

sources
position

velocity

r_arm_pid_controller

sinks
effort

sources
position

velocity

- interfaces created dynamically when
 a client is loaded.

- only required joints and sinks/sources
 are exposed.

- data vectors list joints in the order
 required by the client.

- maps from required client interfaces
 to internal robot representation.

- maps are setup/cleaned up on client
 load/unload.

tr
a
n

sm
is

si
o
n

s
e
n

fo
rc

e
 l
im

it
s

..
.

sinks
position

effort

velocity

sources

effort

position

velocity

joint space

sources
position

effort

velocity

sinks

effort

position

velocity

actuator space

- not all resources need to be used
 (see gray fields).

- below sinks have exclusive ownership,
 ie. can't be shared by multiple clients.

- below sources can have multiple
 clients.

joint_controller_manager

the joints controlled by this client
don't have pos/vel sinks, but rather
an effort sink...

...so an additional module is chained
to convert pos/vel commands to
effort commands: a PID controller.

h
a
rd

w
a
re

 a
cc

e
ss

actuator_manager

sinks
position

effort

velocity

sources

effort

position

velocity

timetime

actuator source and sink ordering is
the same as in actuator_manager.

available actuators and control
interfaces.

- clients state their required interfaces. Source and sink data
 need not have the same size or joint ordering.

- arbitrary combinations of sources and sinks are allowed,
 eg. a joint_states publisher containing only sinks (not shown).

- data layout is that of a structure of arrays (SoA), which
 allows clients to be written using fewer explicit loops.

Motivation: exposing joint control interdaces for a new hardware platform should be
much easier, mainly consisting of 1. having a robot model description, 2. coding a
platform-specific actuator_manager (driver + joint_controller_manager interface),
and 3. setting up the deployment of the desired controllers by means of
scripting / configuration files.

Example scenario: This figure corresponds to a robot consisting of a mobile base with
two velocity-controlled joints, a position/velocity-controlled pan-tilt unit (ptu) and two
arms with four effort-controlled joints each. Only one arm is being controlled.

Comments:
- sink/source types (position, velocity, acceleration, effort, stiffness, etc.) are not
 limited to a predefined set, but can be arbitrary, as long as the actuator manager,
 transmissions and client controllers know how to make sense of them.

- clients can be queried for the required interfaces, eg. (translated to human-readable)
 "position and velocity sink and source for joints head_1 and head_2".
 This part of the API is not shown in the figure, which focuses on the data flow.

- the joint_controller_manager expose an interface (also not shown) for
 loading/unloading and starting/stopping clients. It can optionally be exposed as a
 ROS service interface compatible with that of the pr2_controller_manager.

- client controllers can be chosen (at deployment time) to run serialized in the joint
 controller manager thread, or in a dedicated thread, allowing different update
 frequencies and even non-periodic updates. Also, running unstable/experimental
 clients in separate threads prevents them from interfering with mission-critical code
 paths (eg. mode switches, overruns).

- the time source and joint_controller_manager update rate should allow to be driven
 by wall and simulated clocks.

- a reference impletemtation of the computational parts (light gray blocks) should be
 provided, eg. separate spline interpolation and splicing code from current
 FollowJointTrajectoryActionController into a controller-agnostic unit that can be
 unit-tested in isolation.

- the proposed joint_controller_manager implementation is based on Orocos RTT 2.x.

Legend:

foo foo foo

contains data of sink foo for
joints bar and baz.
Joint names/order obtained
by calling getSinkInfo() which
returns something like:

foo
 bar
 baz

sink source

data flow
connection

map between data structures,
not data flow connection

