' An introduction to the Orocos
Real-Time Toolkit

rFSM

and
ITaSC

the

Source
Works

Real-time and Portable

 Hard realtime is Orocos’ competitive
advantage:

* Lock-free data ports favour highest priority
component activity.

* Realtime-aware memory management.

 Does not prevent non-realtime use!

... In an extremely flexible and extendible
programming environment

Real-time and Portable

* Orocos Toolchain is supported on:

Linux 32/64bit (GNU,clang,Intel)

Real-Time Linux Extensions

- Xenomai
- Real-Time Application Interface (RTAI)

Mac OS-X (GNU)
 Windows (XP->7) 32/64bit (MSVS2005-2010)
QNX (GNU) - beta

Extensions to RTT

Log4Cpp logging framework

- With real-time logging support

Lua scripting support

- With application deployment and supervision

OroGen /| ROCK

- Model based code generation of components and
applications

ROS integration

- Open source framework for service robotics
Networked component communication

- Message queues, CORBA, Yarp, ZeroMQ (planned)

Extensions to RTT

e ITaSC

- Instantaneous Task Specification using Constraints
e rIFSM

- (independent) hierarchical state machines

Who's using Orocos. .. ?

e |Institutes:

- K.U.Leuven (B), FU Berlin (D), Polytechnic University
of Catalonia (ES), University of Florida (US), German
research centre for Artificial Intelligence (DFKI,
Bremen, D), University of New South Wales (Sydney,
AU), University of Maryland (USA), Polytechnic
University of Milan (), University of Southern
Denmark, Onera (F), Irisa (F), Cea (F)

« Companies:

- three FMTC member companies (with already one
product several years on the market!); Willow
Garage; and some other machine or robotics builder
companies in Belgium, France, Spain, Canada, USA
(NASA) and the Netherlands, with several products
on the market

A Component’s Life Cycle

Vs

* Allows non real-time
configuration and
cleanup

o Starting is only
allowed once
configured correctly

« Extended with basic
error states

)

public API

Init o

user code \

cleanup()
cleanupHook()

Default Stopped

state

TaskState

PreOperational

& configure()

D/ configureHook()

start()

stop()
stopHook() startHook()
Running
update()
updateHook()

A Component’s Basic Communication

* In which ways can components
communicate?

« Configuration of parameters
 Exchange (streaming) data

 Cooperate to achieve a task

A Component’s Basic Communication

Method invocations

‘ lﬁ_l Services

\ |Data Exchange| '
& = = mp = & Data
g <.) - < Flow
— == Deployment
— Application setup — &
— —1| Configuration

A Component’s Interface: Robot Example

/Data Ports
\<Control>;

/Properties |

Operations

<XML> <Calc>

| - Parameters | - Algorithms | - Data streaming
{ - Persistent - Complex i - Buffered and !
\ configuration i configuration i unbuffered

Config.§ Services | Data

1 1
.. L TaTeTh

.......

A Component’s Interface: Robot Example

"Robot"
Component

"Kinematic
Algorithm"
- "Control

Parameters" /;
"Tool Type" /

/- Joint Setpoints;
- Feed Forward
\\ - "Position

Reached"

- isMoving()
-writeData("file")
- moveTo()
-home()

Properties | Methods DataFlow
<XML> | <Calc> . <Control> |

Config.é Services | Data

Component break-down

—()Provides
—(Requires
|§, Plugin
» Flow Port
Input Output
Ports Ports
Algorithm
executed by
Read - calculate - Write a 'thread’

Component break-down

Operations e OperationCallers
—()Provides
—(Requires
l
P | Plugin
» Flow Port
. Dynamic
| ¢ functions: |4 functions:
npu
pOF:-t -Callbacks 4 - State Charts OPUtrFEUt
> -Algorithms L | - Program orts

scripts

Offering and requesting Services

Component break-down

Operations . OperationCallers

—()Provides
—(Requires
|
P | Plugin
> Flow Port
Dynamic
| ¢ functions: functions:
npu
PoF:'t -Callbacks |4 - State Charts OPUtrF;ut
> -Algorithms “”i - Program orts

scripts

Configuration
Interface

O

Properties

Component break-down

Operations . OperationCallers

—()Provides
—(Requires
|
P | Plugin
» Flow Port
Dynamic
| ¢ functions: functions: 0
npu utput
- & | - State Charts
Ports Callbacks - Ports

L8| - Program
| scripts

-Algorithms

Configuration

Interface
Scripting Properties Marshalling

Example of image recognition

Image
Recognition

Image:
Data Port

car color:
property

O

camera.atPosition

camera.moveTo

T

required

: operation
interface P

locateCar():

file: statemachine.osd

-
StateMachine ExampleSM
{
initial state wait_for_image {
// on imageReady event, make
// transition to other state:
transition Image(new_image)
select image_captured;

I

state image_captured {
// program executed when this state
/] is entered:
entry {
set p = this.locateCar();
camera.moveTo(p);
}
// when entry is done, go back:
if camera.atPosition(p)
select wait_for_image;

}

final state end {}
}

RootMachine ExampleSM sm;

Example Application

Ethernet

Code break-down

MyComponent.cpp

class

. public RTT:: i RTT::TaskContext is our base

{
public:
MyComponent ()
: :TaskContext (name)|j

{
addOperation & ::set_param, this)

.doc) ——> |nterface building
.arg();

} ———> User code is placed in hooks...

... or in custom functions

Makes this library a
loadable Orocos component

ORO_CREATE_COMPONENT(MyComponent) }

That’s all folks !

Pay us a visit at http://www.orocos.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

